If you plan to run 35,000 units in a 10-hour shift at a rate of 90 UPH, how many employees do you need?

Prepare for your Six Sigma Yellow Belt Certification Exam with comprehensive flashcards and multiple-choice questions. Each question includes helpful hints and detailed explanations. Ace your exam confidently!

To determine how many employees are needed to run 35,000 units in a 10-hour shift at a rate of 90 units per hour (UPH), you need to first calculate the total number of labor hours required to produce the units.

Begin by finding out the total number of hours required to produce 35,000 units at the rate of 90 UPH:

  1. Calculate the total production hours needed: Total hours required = Total units / UPH Total hours required = 35,000 units / 90 UPH Total hours required = 388.89 hours

Next, since the shift is 10 hours long, you'll want to determine how many employees are necessary to cover the 388.89 hours of production within that time frame:

  1. Calculate the number of employees needed: Number of employees = Total hours required / Hours per employee Number of employees = 388.89 hours / 10 hours Number of employees = 38.89

Rounding up, because you cannot have a fraction of an employee, you would require 39 employees to meet production demands.

The answer you provided identifies 39 as the correct number of employees needed for this production scenario, which

Subscribe

Get the latest from Examzify

You can unsubscribe at any time. Read our privacy policy